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Abstract
Argument pair extraction (APE) is a fine-grained task of argument mining which aims to 
identify arguments offered by different participants in some discourse and detect interac-
tion relationships between arguments from different participants. In recent years, many 
research efforts have been devoted to dealing with APE in a multi-task learning frame-
work. Although these approaches have achieved encouraging results, they still face sev-
eral challenging issues. First, different types of sentence relationships as well as different 
levels of information exchange among sentences are largely ignored. Second, they solely 
model interactions between argument pairs either in an explicit or implicit strategy, while 
neglecting the complementary effect of the two strategies. In this paper, we propose a novel 
Mutually Enhanced Multi-Scale Relation-Aware Graph Convolutional Network (MMR-
GCN) for APE. Specifically, we first design a multi-scale relation-aware graph aggregation 
module to explicitly model the complex relationships between review and rebuttal passage 
sentences. In addition, we propose a mutually enhancement transformer module to implic-
itly and interactively enhance representations of review and rebuttal passage sentences. We 
experimentally validate MMR-GCN by comparing with the state-of-the-art APE methods. 
Experimental results show that it considerably outperforms all baseline methods, and the 
relative performance improvement of MMR-GCN over the best performing baseline MRC-
APE in terms of F1 score reaches to 3.48% and 4.43% on the two benchmark datasets, 
respectively.

Keywords  Argument mining · Argument pair extraction · Transformer · Graph 
convolutional network

1  Introduction

Argument Mining (AM) has attracted increasing research interest in recent years due to its 
wide and practical usage in many real-world scenarios, such as AI debate (Le et al., 2018; 
Mancini et al., 2022), social media (Lytos et al., 2019; Dutta et al., 2022), legal field (West-
ermann et al., 2022; Elaraby & Litman, 2022), etc. AM aims to extract the semantic and 
logical structure of argumentative documents (Yuan et al., 2021; Cheng et al., 2022). Early 
research works mainly focus on identifying the argumentation structure of a monological 
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document (Potash et al., 2017; Kuribayashi et al., 2019). Potash et al. (Potash et al., 2017) 
employ pointer network sequence-to-sequence attention modeling to detect arguments and 
extract relationships between detected arguments. Kuribayashi et  al. (2019)) further take 
into account linguistic features to predict argument structure.

Recently, there is a new research line of work investigating the extraction of interactive 
argument pairs from two argumentative passages of a discussion, which is referred to as 
argument pair extraction (APE) (Bao et al., 2021, 2022; Lu et al., 2021). APE is a challeng-
ing task since it needs to identify arguments offered by different participants in some dis-
course and detect interaction relationships between arguments from different participants. 
Figure 1 shows an example of APE, which comprises a review passage with eleven sen-
tences and a rebuttal passage with sixteen sentences. The APE model needs to identify all 
arguments (marked in blue and brown) in both the review passage and the rebuttal passage, 
as well as extract all argument pairs (e.g., Pair-1 and Pair-2).

A straightforward solution is to cast the APE task into a pipeline with two subtasks, including 
a sequence labeling task which identifies all arguments from two passages (i.e., the review pas-
sage and the rebuttal passage), as well as a sentence relation classification task which determines 
argument pairs from these identified arguments. However, the limitation of this solution is that 
it neglects the correlation information among the two subtasks. To overcome the issue, some 
research efforts have been devoted to training the two subtasks simultaneously in a multi-task 
learning framework. For example, Cheng et al. (2020) treat this task as a sequence labeling sub-
task and sentence relation classification subtask, and jointly optimize the two subtasks. Cheng 
et al. (2021) propose a multi-layer multi-cross encoder to implicitly learn the useful information 
in the two passages. Bao et al. (2021) construct an inter-sentence relation graph based on co-
occurring words to explicitly model the relationship between the review passage sentences and 
rebuttal passage sentences. Bao et al. (2022) further cast the APE task as a multi-turn machine 
reading comprehension (MRC) task with an AM phase and an APE phase. Although these 
researches have considerably boosted the performance of the APE task, they still suffer from two 
issues. First, the complex relationships of both intra-passage and inter-passage sentences are not 
well explored, such as the different types of sentence relationships as well as the different level of 
information exchange among sentences. Second, they mainly capture interactions between argu-
ment pairs either in an explicit or implicit strategy. Since the two strategies usually complement 
to each other, only relying on one of them would result in inferior performance.

To handle the above issues, in this paper, we propose a Mutually Enhanced Multi-
Scale Relation-Aware Graph Convolutional Network (MMR-GCN) for APE. In particular, 
we first leverage an encoder to obtain sentence representations in the review passage and 
rebuttal passage, then we construct a multi-scale relation-aware graph to explicitly model 
rich relationship information between two passages. After that, we design a mutually 
enhancement transformer module to implicitly utilize the sentence relationship between 
two passages, which can avoid the issue that argument pairs are difficult to extract due to 
the absence of co-occurrence words. It is worth noting that the two modules can be stacked 
multiple times to better capture the complex sentence relationship. In summary, our major 
contributions are as follows:

•	 We design a multi-scale relation-aware graph to explicitly model the relationship 
between review and rebuttal passage sentences.

•	 To overcome the problem that argument pairs are difficult to extract due to the absence of 
co-occurrence words, we propose a mutually enhancement transformer module to implicitly 
and interactively enhance representations of both review and rebuttal passage sentences.



Journal of Intelligent Information Systems	

1 3

•	 Experimental results on two benchmark datasets (RR-Submission-v2 and RR-Passage) 
demonstrate that the proposed method significantly outperforms all baseline methods 
and achieves new state-of-the-art results.

2 � Related work

Argument mining (AM) (Fromm et al., 2021; Srivastava et al., 2023; Andrea et al., 2021; 
Cabrio & Villata, 2022) attempts to extract the semantic and logical structure of argumen-
tative documents, and plays a vital role in natural language processing (Le et  al., 2018; 
Dutta et  al., 2022; Elaraby & Litman, 2022; Yeginbergenova & Agerri, 2023). Previous 
works usually focus on modeling arguments in monological documents. Among these 
works, the neural network-based approaches have achieved promising results for AM. 
For example, Potash et al. (2017) predict argument structure by leveraging a sequence-to-
sequence attention modeling, and also develop a joint model to simultaneously identify 
argument relationships. Eger et al. (2017) present a neural end-to-end solutions to AM, and 
propose to frame the AM problem as a dependency parsing problem. The major limitations 
of the two works is that they ignore the rich linguistic information in documents. To the 
end, Kuribayashi et al. (2019) propose to incorporate linguistic properties of documents, 
and explore a LSTM-minus-based span representation and a task-specific extended repre-
sentation for AM.

Many recent research works attempt to analyze dialogical argumentation, and argu-
ment pair extraction (APE) has become an important research topic (Cheng et al., 2020). 
APE aims at extracting argument pairs from two passages of a discussion. Cheng et al. 
(2020) develop a multi-task learning framework which considers APE as two subtasks, 
i.e., a sequence labeling task and a sentence relation classification task. The former 
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Fig. 1   An example of APE task
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focuses on detecting arguments in both review and rebuttal passages, and the latter aims 
at identifying argument pairs between them. The two subtasks are then jointly optimized 
and the argument pairs are extracted by the combination of them. Its main drawback is 
that it simply concatenates the two passages to a single passage to perform the sequence 
labeling task, which ignores the different characteristics of the two passages. To tackle 
this issue, Cheng et  al. (2021) apply two individual sequence encoders for the review 
passage or rebuttal passage respectively and update each encoder via mutual attention. 
They model the correlation between two passages via a table-filling model and extract 
argument pairs by leveraging the attention-guided multi-layer multi-cross encoding 
scheme.

More recently, some research efforts (Bao et al., 2021, 2022) have been devoted to mod-
elling argument-level relations rather than only considering sentence-level relations. Bao 
et al. (2021) propose a mutual guidance framework. It uses the argument information in 
one passage to identify its paired arguments in the other passage. Bao et  al. (2022) fur-
ther cast the APE task as a multi-turn machine reading comprehension (MRC) task with 
an AM phase and an APE phase. Differ from these methods, we argue that the complex 
relationships of both intra-passage and inter-passage sentences should be explored. Since 
relational graph convolutional network can capture complex relationships between differ-
ent data sources, and there have been many applications in the field of natural language 
processing (Liang et al., 2021; Xing & Tsang, 2022).Therefore, we develop a multi-scale 
relation-aware graph module to explicitly model the relationship between review passage 
sentences and rebuttal passage sentences. Moreover, we also propose to implicitly cap-
ture the sentence relationship between two passages by introducing a mutually enhance-
ment transformer module, which can alleviate the relationship sparsity issue existing in the 
explicit relationship modelling strategy.

3 � Problem definition

In the APE task, there are a review sequence Sv = {sv
1
, sv

2
,⋯ , sv

m
} and a rebuttal sequence 

Sb = {sb
1
, sb

2
,⋯ , sb

n
} , where m and n denote the number of sentences in Sv and Sb , respec-

tively. We treat the APE task as a multi-task learning problem, which consists of two sub-
tasks, i.e., argument mining and sentence pairing. The former subtask aims at recognizing 
all arguments in each sequence which can be casted as a sentence-level sequence labeling 
problem. We use the standard BIO scheme (Ratinov & Roth, 2009) and Conditional Ran-
dom Field (Lafferty et al., 2001) to extract all review arguments Av = {av

1
, av

2
,⋯ , av

lv
} and 

rebuttal arguments Ab = {ab
1
, ab

2
,⋯ , ab

lb
} , where lv and lb denote the number of arguments 

in the review and rebuttal sequences, respectively. The latter subtask attempts to predict 
argument pairs from the review and rebuttal sequences, which can be formulated as a table-
filling problem (authorname, 2014). We use the table-filling method and multi-layer per-
ceptron to predict whether two sentences belong to the same argument pair. Finally, we get 
all the argument pairs P = {p1, p2,⋯ , plp} based on the two subtasks, where lp denotes the 
number of argument pairs. As illustrated in Figure 1, there are two arguments in the review 
sequence (i.e., Av = {(5 − 6), (7 − 8)} ) and two arguments in the rebuttal sequence (i.e., 
Ab = {(1 − 8), (10 − 16)} ). The argument pairs between the review arguments and rebuttal 
arguments are P = {((5 − 6), (1 − 8)), ((7 − 8), (10 − 16))}.
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4 � Methods

The overall architecture of our proposed model (MMR-GCN) is illustrated in Figure  2. It 
mainly consists of four components, including Sentence Encoder, Multi-Scale Relation-Aware 
Graph Aggregation (MSRAGA), Mutual Enhancement Transformer (MET), and Prediction 
Layer. First, each sentence in the review and rebuttal passages is fed into a sentence encoder 
to get a sentence representation. Next, a multi-scale relation-aware graph aggregation is used 
to explicitly model the relationship between review and rebuttal passage sentences. After that, 
we propose a mutual enhancement transformer to implicitly and interactively enhance the rep-
resentations of review and rebuttal passage sentences. Note that, both MSRAGA and MET 
modules can be stacked multiple times. Finally, a prediction layer is used to extract arguments 
and identify argument pairs.

4.1 � Sentence encoder

For each sentence si = {wi
1
,wi

2
, ...,wi

|si|} with |si| words, we adopt the pre-trained language 
mdoel BERT (Devlin et al., 2019) to encode its content information and obtain the sentence’s 
hidden state sequence {hi

1
, hi

2
, ...,hi|si|} , then the hidden state sequence are fed into a word-

level Bidirectional Long Short-Term Memory (Bi-LSTM) (Hochreiter & Schmidhuber, 1997). 
We concatenate the last hidden state of each direction as the sentence representation si . 
Through the above operation, we can get the representation of all sentences in the review 
sequence Sv =

{
sv
1
, sv

2
, ..., sv

m

}
 and the rebuttal sequence Sb =

{
sb
1
, sb

2
, ..., sb

n

}
.

To further incorporate the contextual information, the obtained representations correspond-
ing to the review and rebuttal sequences are fed into two distinct sentence-level Bi-LSTM to 
get the contextualized representations of the two sequences:

where Cv and Cb represent the review and rebuttal sequence representations, respectively.

4.2 � Multi‑Scale Relation‑Aware Graph Aggregation (MSRAGA)

To effectively capture the rich relationship information embedded in both review and 
rebuttal sequences, we develop a multi-scale relation-aware graph aggregation (MSRAGA) 
module. MSRAGA consists of two sub-modules, i.e., Multi-scale Relation-aware Graph 
Construction and Graph Aggregation.

Multi‑scale relation‑aware graph construction  Given a review sequence Sv and a rebut-
tal sequence Sb , we denote the graph as G = (V, E,R) . The nodes in G are the sentences 
in both review and rebuttal sequences, i.e., V = Vv ∪ Vb , where Vv = {sv

1
, sv

2
,⋯ , sv

m
} and 

Vb = {sb
1
, sb

2
,⋯ , sb

n
} are the node sets corresponding to the review sentences and the rebut-

tal sentences, respectively. The edge (i, j, rij) ∈ E denotes the information aggregation from 
the ith node to the jth node under the relation rij ∈ R . In this paper, we define seven rela-
tionship types, i.e., R = {r1, r2,⋯ , r7} , and the definition of each relationship type is given 
in Table 1. More precisely, in the review sequence, we consider the sequential sentence 

(1)Cv = {cv
1
, cv

2
, ..., cv

m
},

(2)Cb = {cb
1
, cb

2
, ..., cb

n
},
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relationships and build edges between neighboring sentences. Since the distances between 
two neighboring sentences reflect their strength of relationships, we consider two different 
types of relationships, i.e., one-hop neighbor relationship and two-hop neighbor relation-
ship. Moreover, we also introduce a self-loop relationship to hold the influence of the iden-
tical node. Similarly, we can obtain three corresponding relation types from the rebuttal 
sequence. At last, we also build cross-passage edges by exploiting the word co-occurrence 
relationship between the review sentences and the rebuttal sentences, i.e., there is a co-
occurrence edge between a review sentence and a rebuttal sentence only when the number 
of co-occurrence words of the two sentences is greater than a certain threshold. Figure 3 
demonstrates an example of graph construction, where different colors denote different 
types of edges.

Since a larger threshold usually leads to a more sparse connection between the review 
sentences and the rebuttal sentences, which means different thresholds will exploiting dif-
ferent levels of information exchange among the review and rebuttal passages. Therefore, 
in this work, we build multiple graphs with different scales of thresholds, e.g., Gs denotes 
the graph with a threshold s.

Graph aggregation  For each node in V , their feature vectors are initialized with corre-
sponding contextualized sentence representations:

where G = {g1, g2,⋯ , gm+n} ∈ ℝ
(m+n)×2dh . Then we apply the relational graph convolution 

network (Schlichtkrull et  al., 2018; Fang et  al., 2023) to model the semantic interaction 
between sentences:

where Nr,s

i
 denotes the neighbor set of node i under relation r ∈ R at scale s, and ci,r is a 

problem-specific normalization constant.

(3)G = Cv ∪ Cb,

(4)gs
i
= �

⎛
⎜⎜⎝
�
r∈R

�
j∈Nr,s

i

1

ci,r
Ws

r
gs
j
+Ws

g
gs
i

⎞
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Fig. 2   The overview of our model structure
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Afterwards, we apply a gate mechanism to fuse the representations of corresponding 
nodes at different scales to update sentence representation gi.

where Ws ∈ ℝ
1×2dh and bs ∈ ℝ are trainable parameters, S denotes the set of thresh-

olds. Hence, the review sequence and rebuttal sequence can be represented as 
Gv =

{
gv
1
, gv

2
,⋯ , gv

m

}
 and Gb =

{
gb
1
, gb

2
,⋯ , gb

n

}
 , respectively.

4.3 � Mutual Enhancement Transformer (MET)

In the multi-scale relation-aware graph aggregation module, we explicitly introduce the 
cross-passage relation, i.e., r7 , to enhance the representation learning of review (rebut-
tal) sentences by capturing their corresponding rebuttal (review) information. However, 
the cross-passage relation heavily relies on the co-occurrence words between a review 
sentence and a rebuttal sentence, which would suffer from the data sparsity issue, e.g., 
two correlated sentences would have no co-occurrence words. To handle this issue, we 
propose a mutual enhancement transformer to implicitly explore the semantic infor-
mation among cross-passage sentences. The mutual enhancement transformer con-
sists of two sub-modules, including a rebuttal-guided transformer and a review-guided 
transformer.

Rebuttal‑guided transformer  This module aims to use rebuttal semantic information to 
enhance review sequence representation, it consists of three parts, two multi-head atten-
tions (Li et al., 2019) and a feed-forward neural network (FFN) (Rezatofighi et al., 2022). 
First, we adopt the multi-head self-attention mechanism to mine semantic information 
between review sentences. Specifically, for each attention head i ∈ [1, h] , we project review 
sequence embedding matrix Gv into the query, key, and value matrices, denoted as Qi , 
Ki , Vi , and concatenate the representation of each head as a representation of the updated 
review sequence:

where h denotes the number of attention head, Attention() is the attention function. For 
simplicity, we replace Equations (7) to (9) with the following equation:

(5)gi =
∑
s∈S

�
sgs

i
,

(6)�
s = Softmax(Wsgs

i
+ bs),

(7)Uv = concat(Uv

1
,Uv

2
,⋯ ,Uv

h
),

(8)Uv
i
= Attention

(
Qi,Ki,Vi

)
,

(9)Attention(Q,K,V) = softmax(
QKT

√
dk

)V,

(10)Uv = MultiHeadAttetnion(Q,K,V)
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Second, we take the updated review sequence representation Uv as query, rebuttal sequence 
representation �� as both key and value to enhance review sequence representation. This 
operation aims to reveal the importance of each review sentence from the perspective of 
rebuttal sentences, which do not rely on co-occurrence words between a review sentence 
and a rebuttal sentence. Since a review sequence may contain multiple arguments, it is 
more suitable to use multi-head attention to reveal the importance of a sentence from dif-
ferent perspectives.

Next, we apply FFN with a residual connection to generate the final review sequence rep-
resentation Hv = {hv

1
, hv

2
,⋯ , hv

m
} , which contain information about itself and the rebuttal 

sequence:

Review‑guided transformer  This module aims to use the review semantic information to 
enhance rebuttal sequence representation, it is similar to the rebuttal-guided transformer. A 
slight difference is that we take the rebuttal sequence as a query and the review sequence as 
both key and value of MultiHeadAttention to enhance the rebuttal sequence representation. 
Hence, we can obtain a new rebuttal sequence representation Hb = {hb

1
, hb

2
,⋯ , hb

n
}.

Note that, MSRAG and MEF modules are stacked L times. More specifically, we take 
Hv and Hb as input, then fed them into sentence-level Bi-LSTM again. In order to avoid the 
vanishing gradient problem, we also apply residual network to connect adjacent layers:

4.4 � Prediction layer

After new representations of the review sequence Hv and rebuttal sequence Hb are gen-
erated, we leverage them for argument mining and sentence pair prediction.

Argument mining  For argument mining, we treat it a sequence labeling task and adopt 
CRF (Lafferty et al., 2001) to predict the argument label of each sentence. To be specific, 
given a review sequence Sv = {sv

1
, sv

2
,⋯ , sv

m
} , its corresponding argument label sequence 

(11)Û
v
= MultiHeadAttention

(
Uv,Gb,Gb

)

(12)Hv = ReLU
(
WÛ

v
+ b + Uv

)

(13)H
(l+1)

v∕b
= LayerNorm

(
H

(l+1)

v∕b
+H

(l)

v∕b

)

Table 1   All relationship types 
in the multi-scale relation-aware 
graph

R Definition

r
1

Self-loop relations of the review nodes
r
2

One-hop neighbor relations between the review nodes
r
3

Two-hop neighbor relations between the review nodes
r
4

Self-loop relations of the rebuttal nodes
r
5

One-hop neighbor relations between the rebuttal nodes
r
6

Two-hop neighbor relations between the rebuttal nodes
r
7

Cross relations between the review and rebuttal nodes
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Av = {av
1
, av

2
,⋯ , av

m
} , and A(Sv) denotes the set of possible argument label sequences for 

Sv . The probability of the review argument label sequence Av is defined as follows:

where the score function score(Sv,Av) is the score for Av which is the sum of transitions 
and emissions (Wang et al., 2020). Similarly, for a rebuttal sequence Sb = {sb

1
, sb

2
,⋯ , sb

n
} , 

we can define the probability of its argument label sequence Ab = {ab
1
, ab

2
,⋯ , ab

n
} as 

P(Ab|Sb) . Then, the loss function for argument mining over both review sequence and 
rebuttal sequence is given by:

During inference, the predicted sequence label is defined as follows:

Sentence pair prediction  We take Hv and Hb as the input of the sentence pair prediction 
module, and generate a table feature. Specifically, for a sentence pair (sv

i
, sb

j
) , we denote it 

table feature as TFi,j , which is defined as follows:

where Wp ∈ ℝ
2dh×4dh and bp ∈ ℝ

2dh , are trainable parameters. hv
i
 and hb

j
 denote the repre-

sentations of the i-th review sentence and j-th rebuttal sentence respectively, and � is an 
activation function. After that, we employ a Multi-Layer Perceptron (MLP) and a sigmoid 
function to compute the probability pi,j that the two sentences (sv

i
, sb

j
) belong to the same 

argument pair.
For the sentence pair prediction module, we define the loss function Lpair as the cross-

entropy of the prediction and the ground-truth:

(14)P(Av�Sv) = exp(score(Sv,Av))∑
A�∈A(Sv) exp(score(S

v,A�))
,

(15)Lam = −
(
logP(Av|Sv) + logP(Ab|Sb))

(16)Av
∗
= argmin

Av

P(Av|Sv)

(17)Ab
∗
= argmin

Ab

P(Ab|Sb)

(18)TFi,j = �

(
Wp[h

v
i
;hb

j
] + bp

)
,

(19)Lpair = −

m∑
i=1

n∑
j=1

(y
pair

i,j
log pi,j + (1 − y

pair

i,j
) log(1 − pi,j)),

……

……

v v

v v

vv b b

bv

b

bb

b

: One-hop neighbor

: Two-hop neighbor

: Self-loop

: One-hop neighbor

: Two-hop neighbor

: Self-loop

: Cross-passage edge

Fig. 3   An example of graph construction
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where ypair
i,j

 is the ground-truth which equals to 1 if sv
i
 and sb

j
 are paired and 0 otherwise. 

Finally, we obtain the overall loss of MRR-GCN:

where � is a hyper-parameter to control the weight of two losses.
During inference, we consider a pair of candidate spans ([sv

i1
,⋯ , sv

i2
] , [sb

j1
,⋯ , sb

j2
]) as a 

valid pair if the two spans satisfy:

5 � Experiments

5.1 � Experimental setup

Datasets  We evaluate our model on the Review-Rebuttal (RR) dataset (Cheng et  al., 
2020), which consists of 4,764 pairs of review-rebuttal passages collected from ICLR 
2013-2020. Two versions of the dataset are provided, including RR-submission-v2 (Cheng 
et al., 2021) and RR-Passage. In each version, the data are split into train, development and 
test sets with a ratio of 8:1:1. Note that, in RR-submission-v2, multiple argument pairs of 
the same paper are in the same train/dev/test set, while RR-passage can not guarantee this. 
Table 2 presents the details about the RR dataset.

Baselines  We compare MMR-GCN with the following competitive baselines:

•	 MT-H-LSTM-CRF Cheng et al. (2020) considers the APE task as two sub-tasks, and 
simultaneously optimizes the two sub-tasks with a multi-task learning framework.

•	 MLMC Cheng et  al. (2021) leverages an attention-guided multi-layer multi-cross 
encoder and introduces a table-filling method for sentence relation classification.

(20)L = Lam + �Lpair

(21)
∑i2

i=i1

∑j2
j=j1

�(pi,j > 0.5)

(i2 − i1 + 1) × (j2 − j1 + 1)
≥ 0.5

Table 2   Statistics of the Review-
Rebuttal(RR) dataset

RR Total number of argument pairs 4764

Review Total number of review sentences 99.8k
Total number of review arguments 23.2k
Total number of review argument sentences 58.5k
Average number of sentences of per review passage 21.0
Average number of sentences or per review 

argument
2.5

Rebuttal Total number of rebuttal sentences 94.9k
Total number of rebuttal arguments 17.7k
Total number of rebuttal argument sentences 67.5k
Average number of sentences of per rebuttal passage 19.9
Average number of sentences or per rebuttal 

argument
3.8
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•	 MGF Bao et al. (2021) proposes to explicitly model the relationship between two sen-
tences by introducing a mutual guided framework with an inter-sentence relation graph.

•	 MRC-APE Bao et al. (2022) attempts to explore argument-level interactions and takes 
the APE task as a machine reading comprehension problem with two phases.

5.2 � Implementation details and metrics

We implement our model MMR-GCN in PyTorch with a NVIDIA RTX 3090Ti GPU, and 
adopt the bert-base-cased as our based encoder.To optimize MMR-GCN, we utilize the 
AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 2e-4. The head 
number of the multi-head attention and the dropout rate are 4 and 0.5, respectively. The 
batch size is 1 and the epoch is 25. During the evaluation process, we select the best model 
parameters based on their performance on the development set,and then apply them to the 
test set to assess the final performance. We evaluate the compared methods using three 
metrics: Precision, Recall, and F1 scores. We report the performance of the argument pair 
extraction task, as well as the two sub-tasks, namely argument mining and sentence pair-
ing. To ensure the reliability of our results, we conduct the experiments five times with 
different random states. We then calculate the average scores across these iterations and 
report them as the final evaluation results.

5.3 � Overall comparison

The experimental results of MMR-GCN and all baseline methods on RR-Submission-v2 
and RR-passage datasets are reported in Table 3. For the task of argument pair extraction, 
we can observe that MMR-GCN significantly improves the overall performance on both 
datasets as compared with all baseline methods. To be specific, among all baseline meth-
ods, MT-H-LSTM-CRF achieves the worst performance. This is attributed to that it could 
not fully capture the specific characteristics and relations of the review and rebuttal pas-
sages. MLMC obtains a better performance than MT-H-LSTM-CRF as it further models 
the sentence-level correlations between two passages by applying a table-filling method. 
MGF is superior to both MT-H-LSTM-CRF and MLMC. The reason is that it proposes to 
explicitly model the argument-level correlations between two passages with a mutual guid-
ance framework. Similar to MGF, MRC-APE also models the argument-level interactions 
and achieves the best performance on both datasets in terms of F1 score among all baseline 
methods. This is mainly because that MRC-APE identifies all arguments based on an argu-
ment mining query, and extracts its paired arguments from another passage by taking each 
identified argument as an APE query. Our proposed method MMR-GCN considerably out-
performs all baseline methods, and achieves the highest F1 score of 41.31% and 42.41% on 
RR-submisssion-v2 and RR-passage, respectively. The relative performance improvements 
of MMR-GCN over the best performing baseline MRC-APE in terms of F1 score reach to 
3.48% and 4.43% on the two datasets, respectively.

In addition, for all methods, we also show their corresponding performance of the 
two sub-tasks, i.e., argument mining and sentence pairing. It is worth noting that both 
MGF and MRC-APE leverage the argument-level correlations rather than sentence-level 
correlations, therefore they cannot be utilized for the sentence pairing sub-task. For the 
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argument mining sub-task, we can see that our proposed approach MMR-GCN is rela-
tively inferior to some baseline methods, such as MRC-APE. While for the sentence 
pairing sub-task, MMR-GCN is significantly superior to all baseline methods. Similar 
results can be observed for the other two metrics, i.e., precision and recall.

5.4 � Ablation study

We conduct ablation studies on the RR-Submission-v2 dataset to analyze the impacts of 
different components in our model. More precisely, we consider the following variants 
for experiments: 1) w/o MSRAGA​: we ignore the rich relationship information embed-
ded in the review and rebuttal passage sentences by removing the multi-scale relation-
aware graph aggregation module; 2) w/o Scale-1: we discard the relation-aware graph 
with scale 1, i.e., the number of co-occurrence words of a review passage sentence and 
a rebuttal passage sentence is greater than one; 3) w/o Scale-2: Similarly, we discard 
the relation-aware graph with scale 2; 4) w/o MET: we overlook the implicit semantic 
information among cross-passage sentence by removing the mutual enhancement trans-
former; 5) w/o Relation: All relationship types in the multi-scale relation-aware graph 
are discarded, and we replace the relational graph convolution network with a conven-
tional graph convolution network.

Table 4 reports the performance of MMR-GCN and its variants on RR-Submission-
V2 dataset. We summarize the observation as follows: Firstly, we can observe that 
removing each component will lead to a considerable performance drop. To be specific, 
the results show a performance decline after discarding the relation-aware graph with 
both scale 1 (w/o Scale-1) and scale 2 (w/o Scale-2), which indicates the effectiveness 
of employing multiple graphs with different scales in the proposed model. The results 
also show that removing the relation-aware graph with scale 2 will lead to a larger per-
formance degradation as compared to removing the relation-aware graph with scale 1. 
The reason is that the graph with scale 1 would have more noisy edges, while the graph 
with scale 2 alleviate the noisy edge issue by utilizing a higher threshold. Secondly, 
removing the mutual enhancement transformer w/o MET or overlooking all relation-
ship types in the multi-scale relation-aware graph w/o Relation will also cause a drop of 
performance. This indicates the importance of taking the relationship types among dif-
ferent passage sentences as well as modeling the implicit semantic information among 
cross-passage sentences. Third, among all variants, removing the multi-scale relation-
aware graph aggregation module w/o MSRAGA​ will significantly degrade our model 
performance, e.g., the relative performance drop is 11.58%.

Table 4   Ablation study of our 
model on RR-Submission-V2 
dataset

Model Settings APE
Pre. Rec. F1 Δ F1

MMR-GCN 44.69 38.44 41.31 -
w/o MSRAGA​ 30.78 28.75 29.73 -11.58%
w/o Graph2 38.35 29.68 33.45 -7.86%
w/o Graph1 43.16 37.07 39.85 -1.46%
w/o MET 43.75 37.06 40.11 -1.20%
w/o Relation 43.28 37.35 40.07 -1.24%
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5.5 � Hyperparameter sensitivity analysis

Here, we investigate the performance of MMR-GCN with respect to different settings of 
important hyperparameters.

Impact of L  To investigate the impact of the stack times L of both MSRAG and MEF mod-
ules on the performance of MMR-GCN, we vary L from 1 to 6. The results are reported in 
Figure 4. On the RR-Submission-v2 dataset, we find that the performance of MMR-GCN 
first improves gradually and achieves the best results when L=3. There is a drop of perfor-
mance when we continue to increase L. Similar trend of model performance can also be 
observed on the RR-Passage dataset. This implies that the parameter L is critical for boost-
ing the performance of MMR-GCN. When L is small, the model cannot well capture the 
complex relationships between sentences of the two passages. However, when L increases 
to a certain extent (e.g., larger than 3), the model will suffer from the overfitting problem.

Impact of �  � is a loss balancing parameter, which is utilized to adjust the weight of the 
two losses in our model MMR-GCN. We investigate the performance of MMR-GCN with 
� varying from 0 to 1, and the results are shown in Figure 5. From Figure 5, we can see that 

Fig. 4   The impact of stacked layers L 

Fig. 5   The impact of hyperparameter �
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on the RR-Submission-v2 dataset, MMR-GCN achieves the best performance when � is 
around 0.6, and the model performance has a drop when � becomes too large or too small. 
The performance of MMR-GCN on the RR-Passage dataset is more stable as compared to 
that on the RR-Submission-v2 dataset, and the best performance is obtained when �=0.8. 
This indicates that among the two sub-tasks, the argument mining is more important than 
the sentence pairing in our model since the error in the argument mining sub-task would be 
propagated into the sentence pairing sub-task.

5.6 � Performance over different number of argument pairs

As different data samples may have distinct number of argument pairs, in this section, 
we investigate the performance of our proposed model MMR-GCN over samples with 
different argument pair numbers. As the number of argument pairs of most samples 
are between 1 and 10, we show their corresponding frequency distribution of argument 
pairs on the RR-Submission-v2 dataset in Figure  6(a). We can see that most samples 
have a relatively small number of argument pairs (e.g., less than 5), and samples with 
three argument pairs has the highest frequency. Figure 6(b) shows the performance of 
MMR-GCN over samples with different number of argument pairs. The results show 
that the performance raises gradually when samples have more argument pairs, and 
reaches a peak when the number of argument pairs is around seven. After that, there will 
be a performance degradation. This is because MMR-GCN leverages two modules (e.g., 
MSRAGA and MET) to explicitly and implicitly learn cross-passage relation informa-
tion between review and rebuttal passages. When there is a small number of argument 
pairs or even no argument pairs, the cross relation information would be noise and hurt 
the model performance. However, when the number of argument pairs is too large, it 
will make the task become too complex and leads to inferior performance.

5.7 � Computational efficiency

Table 5 shows the comparison results for computational efficiency between our model and 
MLMC, including the running time and number of parameters, on the RR-Submission-v2 

Fig. 6   Analysis on different number of argument pairs



	 Journal of Intelligent Information Systems

1 3

dataset. Compared with MLMC, our model achieves better results in terms of both running 
time and number of parameters. Specifically, when the same number of layers is adopted, 
our proposed model MMR-GCN will run faster than MLMC. For example, the running 
time of MMR-GCN(L=2) is 13 minutes, which is nearly one third of the running time of 
MLMC(n=2). In addition, when we raise the number of layers, the improvement of the 
running time of MMR-GCN is relatively much small than that of MLMC. Finally, the 
number of parameters of MMR-GCN is also less than that of MLMC.

5.8 � Impact of training set proportion

To provide more insights on the performance of our proposed model MMR-GCN with 
respect to the quality of training sets, we carry out comparative experiments under differ-
ent training proportions on the dataset RR-Submission-v2. The results are demonstrated 
in Figure 7, from which we can have the following observations. First, the performance of 
MMR-GCN is sensitive to the size of the training set, and obtains superior performance 
when more training samples are available. Second, our proposed approach consistently per-
forms better than the two most competitive baselines, i.e., MGF and MRC-APE.

Table 5   Running time 
per epoch and number of 
parameters of the proposed 
MMR-GCN and MLMC on the 
RR-Submission-v2 dataset

Models RT(min) #Params

MLMC(n=1) 22 5.8M
MLMC(n=2) 33 7.4M
MLMC(n=3) 44 9.1M
MLMC(n=4) 55 10.8M
MLMC(n=5) 66 12.5M
MMR-GCN(L = 1) 12 5.3M
MMR-GCN(L = 2) 13 6.6M
MMR-GCN(L = 3) 14 7.9M
MMR-GCN(L = 4) 15 9.2M
MMR-GCN(L = 5) 16 10.5M

Fig. 7   Proportion of Training 
Data
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5.9 � Convergence analysis

Figure 8 demonstrates the convergence speed of our proposed model MMR-GCN and the 
two most competitive baseline models (i.e., MGF and MRC-APE) on the two datasets 
(i.e., RR-Submission-v2 and RR-Passage). The results show that MMR-GCN can obtain 
its best performance at a small epochs. For example, it achieves the best performance on 
both datasets at epoch 25, and after that it becomes stable and convergent. In addition, 
the performance of MMR-GCN is consistently better than that of both MGF and MRC-
APE when the number of epochs is over 20 and 15 on RR-Submission-v2 and RR-Passage, 
respectively.

6 � Conclusion

In this work, we present a novel mutually enhanced multi-scale relation-aware graph con-
volutional network (MMR-GCN) for the task of APE. To be specific, we propose to explore 
the complex relationships of both intra-passage and inter-passage sentences and develop a 
multi-scale relation-aware graph aggregation module to explicitly model different types of 
sentence relationships as well as the different levels of information exchange among sen-
tences. In addition, we design a mutual enhancement transformer to implicitly explore the 
semantic information among cross-passage sentences, which can alleviate the data sparsity 
issue existing in the multi-scale relation-aware graph aggregation module. Experimental 
results show that the proposed model is superior to all baseline methods on all datasets.

For future work, we will exploit external knowledge to enhance the modeling of com-
plex relationships among different sentences. It is worth noting that MMR-GCN achieves 
promising performance on the subtask of sentence pairing, while its performance on the 
subtask of argument mining is inferior to the best performing baseline. To the end, we also 
plan to improve the argument mining capability of our model.
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